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Abstract. Knowledge of the three-dimensional strain state induced in the superconducting
filaments due to loads on Rutherford cables is essential to analyze the performance of
Nb3Sn magnets. Due to the large range of length scales involved, we develop a hierarchical
computational scheme that includes models at both the cable and strand levels. At the
Rutherford cable level, where the strands are treated as a homogeneous medium, a three-
dimensional computational model is developed to determine the deformed shape of the cable
that can subsequently be used to determine the strain state under specified loading conditions,
which may be of thermal, magnetic, and mechanical origins. The results can then be transferred
to the model at the strand/macro-filament level for rod restack process (RRP) strands, where
the geometric details of the strand are included. This hierarchical scheme can be used to
estimate the three-dimensional strain state in the conductor as well as to determine the effective
properties of the strands and cables from the properties of individual components. Examples
of the modeling results obtained for the orthotropic mechanical properties of the Rutherford
cables are presented.

1. Introduction

The ability to obtain the three dimensional strain state in Nb3Sn filaments is of key importance
in understanding the performance of Nb3Sn magnets under macro-scale loads. However, this is a
difficult task due to the widely varying length scales in superconducting magnets. For example,
some of the length scales that play an important role are the magnet, coil, cable, strand, and
filament length scales, where the magnet and coil are in the m scale, the cable and strand in the
mm scale, and the filaments in the µm scale. Clearly, the direct simulation of the macro-scale
problem including the micro-scale details is prohibitably expensive; therefore, multi-scale tools
that can be used to understand the behavior across various length scales are necessary. The
development of such tools could be a significant aid in the understanding of magnet performance
and for magnet design. At Lawrence Berkeley National Laboratory (LBNL) work has begun
on bridging the full range of scales seen in large accelerator magnets, with specific emphasis on
magnets fabricated with Rutherford cables. Since the length scales vary widely, several models,
which include the relevant physics at the different length scales, must be created, and efficient
techniques must be developed to bridge these scales. In this paper the main focus, within this
larger framework, is on the development of models at the cable and strand scale that bridge the
behavior between the coil scale and the length scale of a macro-filament in a rod restack process
(RRP) strand.



Computational models that are used to determine the strain state in Nb3Sn filaments have
been developed by several researchers. For example, Mitchell [1, 2] developed one and two-
dimensional models to determine the strain state inside the Nb3Sn filaments from thermo-
mechanical loads on a strand. The one-dimensional model considers the different materials in
the strand by their cross-sectional area fraction and includes plastic deformation which is shown
to play a critical role. Ahoranta and collaborators [3] developed a two-dimensional model for
Nb3Sn strands where in only certain parts of the strand the geometry are considered in full
detail (including filaments), while the rest of the strand is modeled with a simplified geometry.
Boso and collaborators [4, 5] developed a hierarchical multi-scale procedure to model Nb3Sn
conductors. For the deformation of subelements during the cabling procedure, Farinon and
collaborators [6, 7] developed a model to determine the deformation of powder in tube (PIT)
and internal tin (IT) strands in a two-dimensional setting.

In this work, a computational model that is used to determine the three-dimensional
deformation of a Rutherford cable during a cabling process will be presented. In this model, a
regular unaligned mesh is used and the strand material is treated as a homogeneous elasto-plastic
solid. In order to simplify the analysis, the void space between the strands is meshed and treated
with a fictitious material. The properties of this fictitious material are chosen such that it can
undergo large deformations, while transferring a negligible amount of load to the strand material,
until it becomes highly compacted. At this point, the material stiffens considerably and transfers
the contact load between strands or between a strand and the boundary. Using the deformed
shape, a coil unit cell is created which includes the deformed cable, an insulation layer, and the
interstitial epoxy. The effective (homogenized) properties of the coil are then computed using a
homogenization scheme. The model presented in this work allows for calculations across three
scales. The loads from the analysis of a coil in a magnet can be applied to the cable/insulation
unit cell, and the loads at a region in the cable can be applied to a RRP macro-filament unit cell.
The strain state in the RRP macro-filaments are considered only for the linear elastic case. For
this model the loads can be transferred directly from the cable model to the macro-filament unit
cell model since there are only a few macro-filaments from the center to the edge for the strands
which are currently used at LBNL; therefore, the length scale for this unit cell can be considered
to be close to being on the same order of magnitude as the length scale for the strand. In this
work, the simulation of the cable deformation to obtain the initial geometry and a simplified
hierarchical framework (including only linear elastic behavior) for Nb3Sn Rutherford cables are
presented.

2. Rutherford cable model

In this section a simulation of the cabling process is presented and a procedure to determine
the effective properties of a coil is demonstrated using the final deformed shape of the cable.
Results for several test cases are also presented.

2.1. Initial Rutherford Cable Geometry
The first task in determining the shape of the Rutherford cable is to obtain the initial cable
geometry. This geometry is never really constructed in a real cabling process, but it serves as
a starting point for these simulations. This initial configuration corresponds to an undeformed
Rutherford cable where the cross-sections of the strands remain cylindrical. The geometry of the
cable in its initial state is defined by three parameters: the number of strands N , the diameter of
the strands d, and the initial pitch angle φ0. By using the cable symmetry, the length of the cable
section that is modeled is set by the smallest possible repeating unit cell, which corresponds to
the axial distance over which a strand cross-section translates one unit. This distance can be



expressed as

lu =
d

sinφ0

, (1)

where d is the strand diameter and φ0 is the pitch angle of the undeformed cable. The creation
of the inner strands is trivial since they are simply cylinders rotated about the axial direction
of the cable by the angle φ0; however, the edge strand has more strict requirements. Without
loss of generality, an edge strand can be considered that starts on the top with pitch angle φ0

and exits at the bottom with pitch angle −φ0. The requirements for this strand are that its axis
must form an angle φ0 with the cable axis at z = 0, must form an angle −φ0 with the cable axis
at z = lu, and a must have an elevation angle of zero at both of these points. The edge strand is
also required to remain in contact with at least one of the two neighboring strands throughout
the unit cell length. One possible solution for the curve that defines the axis of the strand is
the intersection of two cylinders each with diameter 2d that are offset in the vertical direction
by a distance d and have angles of φ0 and −φ0 respectively (see figure 1). This solution meets
all of the restrictions and is chosen for our simulations; however, it is not expected to be the
only possible solution for the previously identified constraints. For the initial configuration, this
intersection is solved numerically and the curve that defines the axis is discretized in a piecewise
manner. Figure 2 shows the initial undeformed cable geometry.

Figure 1. The intersection be-
tween these two cylinders is taken
as the axis of the end strand in the
initial configurations of the Ruther-
ford cable model.

2.2. Material models and mesh generation
In the cable deformation model, an unaligned regular mesh is used along with an elasto-plastic
strand material and a fictitious void material. This approach is chosen since it circumvents
the need to generate a complicated mesh and does not require contact elements. The contact

Figure 2. Initial undeformed cable configuration used for the cable deformation simulation.



is simulated by the stiffening of the fictitious void material as it becomes highly compressed.
For the meshing procedure, a regular mesh is generated on a rectangular block with eight-node
hexahedral “brick” elements. Each element can then be composed of different materials. For the
large deformation cabling simulations three different types of elements are considered: elements
that contain only the strand material, elements that contain only the fictitious void material, and
interface elements which contain both materials. Initially, the interface materials are treated as
the void material if the total volume of the element exceeds the volume of strand material inside
that element. Once the total volume of the element falls below the volume of strand material
inside the element, that element is converted to an elasto-plastic strand element. Hyper-elastic
constitutive models are used for both the elastic part of the strand deformation and for the
fictitious void material. For the strand, a large deformation elasto-plastic model by Simo [8] is
used. This model uses the von Mises yield criterion and an associated flow rule. In this work
an isotropic hardening law is used and the functional form is chosen to be a power law, which
is given by

k = Aεn, (2)

where A and n are determined by using data for the Young’s modulus, the proportional limit,
the ultimate tensile strength, and the elongation to failure. For the simulations presented in
this work, data for copper is used, which is shown in table 1.

The fictitious void material is modeled with a hyper-elastic law that is modified so that it
is highly compressible, but also becomes infinitely stiff as the volume at a point vanishes. For
Hyper-elastic materials a strain energy function is defined such that the stress is determined
from the gradient of the strain energy with respect to a strain tensor (for details see general
texts on continuum mechanics and elasticity such as [9] and [10]). The strain energy function
used for both the elasto-plastic and fictitious void materials is described by

W =
1

2
κ
[

p(J
1

p − 1)− log(J)
]

+
1

2
µ
(

tr[B̄]− 3
)

, (3)

where the first part is due to the volumetric part of the deformation, and the second part is
due to the distortional part of the deformation, J is the Jacobian of the deformation gradient
which represents the volume change at a point, and B̄ is the deviatoric part of the left Cauchy
Green tensor. In equation 3, p is a parameter which is introduced in order to increase the
compressibility of the fictitious void material. Large values of p create a highly compressible
material, where only small volumetric stresses are present under large volumetric deformations.
This can be seen from figure 3 which shows the volumetric part of the strain energy for various
values of p, where J = 1 corresponds to no volumetric change, therefore, a minimum in the strain
energy. Notice that as p increases the strain energy becomes less sensitive to changes in volume
until a certain point where the material stiffens rapidly. For these simulations, this behavior is
critical for modeling the contact between the strands. For p = 1

2
a realistic material is modeled

which converges to Hooke’s law for infinitesimal deformations. For this case, κ represents the
bulk modulus and µ represents the shear modulus for an isotropic linear elastic material. A
value of p = 1

2
is used for the strand material in order to properly represent the elastic part of

the elasto-plastic behavior.
For the fictitious void material, small values of κ and µ are used along with the previously

described modified volumetric strain energy. It was found that using values of µ that are too
small led to instabilities in the convergence of the solution due to the large amount of distortion
of the fictitious void elements. However, if µ is too large, large deviatoric stresses build up in
the void material which is undesirable. Therefore, values of µ that are large enough to avoid
overly distorted elements are used, and the deviatoric part of the stress for the fictitious void
elements is reset to zero at each step. This approach leads to stable convergence of the model
while greatly limiting the magnitude of the deviatoric stress in the fictitious void material. It is
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Figure 3. Volumetric strain en-
ergy as a function of the Jacobian
of the deformation gradient. For
larger values of p, the volumetric
strain energy becomes less sensitive
to volumetric changes until J ap-
proaches zero.

Table 1. Material properties for the strand and fictitious void materials used in the cable
deformation example.

κ (GPa) µ (GPa) p A (MPa) n σy (MPa)

Strand 125.0 44.8 0.5 211.2 0.211 60.0
Void 10−2 10−1 8 - - -

reiterated here that these types of modifications to the material behavior can only be performed
since the fictitious material is simply a modeling aid for these simulations and does not have to
be representative of a real material.

2.3. Boundary conditions and solution
As mentioned earlier, the smallest possible unit cell is used for the cable deformation simulations.
In order to obtain deformations compatible with “long” cables, periodic boundary conditions
are implemented in the axial direction. The periodic boundary condition is described by

x+ − x− = F(X+ −X−), (4)

where x+ and x− represent the positions of two points, in the deformed configuration, directly
opposite to one another on the periodic surfaces, X+ and X− are their corresponding positions
in the undeformed configuration, and F is the average deformation gradient, which is a tensor
that contains the ratio of the final to initial axial length of the unit cell. On the sides of the cable,
the faces are assumed to compact in a frictionless manner; therefore, displacement boundary
conditions are used where only the displacement degrees of freedom in the normal direction to
the face are constrained. For a real cabling process, the final width and thickness of the cable can
be readily obtained; however, the initial “undeformed” configuration is unknown since, for this
case, it is simply a starting point for the model which is never built in an actual cabling process.
Using only the usual cabling dimension information (width, thickness, strand diameter, number
of strands, pitch length) there is no unique initial configuration. However, if the final packing
factor is considered, a unique initial configuration can be found by determining the initial pitch
angle that is necessary for the volume of the strands to be conserved. This configuration is then
fully specified by the strand diameter, the number of strands, and the initial pitch angle. The
boundary conditions that lead to the final deformed shape are selected by specifying the final
width, thickness, and pitch for the cable.



Figure 4. Final deformed configuration for a cable with an undeformed configuration that is
shown in figure 2 and cabling parameters given in table 2.

Table 2. Parameter used in the cable deformation simulation.

N d (mm) φ0 w (mm) t (mm) Lp (mm)

12 0.8 18.4◦ 5.25 1.42 30.4

For the implementation, the boundary conditions are applied using a penalty method. The
non-linear system of equations is solved using the Newton-Raphson method with a line search.
The line search proved to be critical for convergence the of this scheme. All of the code for
the cable deformation simulation, as well as the subsequent simulations in this paper, is written
Fortran.

2.4. Deformed cable example
In this section, an example of a cable deformation simulation is shown. This specific example
consists of a mesh with 712 thousand elements and 2.2 million degrees of freedom. Table 2 shows
the parameters that are used for this cable deformation example, where w is the final cable width,
t is the final thickness, and Lp is the final pitch length, and as stated earlier, N is the number
of strands, d is the diameter of the strands, and φ0 is the initial pitch angle. As was previously
described, the initial pitch angle is determined from the final cabling dimensions and the packing
factor, which in this case is approximately 84%. Figure 4 shows the three-dimensional deformed
shape of the cable. Figure 5 shows cross-sections of the cable at different points along the
axis. These are compared to cross-sections taken from actual cables where the compaction
parameters were attempted to be matched as well as possible. However, due to computational
expense constraints, there is some ambiguity since the actual cable has 51 strands while the one
used in the simulation has 12 strands. Qualitatively the simulation results match well with the
real cable cross-sections; however, some differences are seen in the regions where two strands
come together since the fictitious material elements can not completely collapse. Nevertheless,
these elements seem to model the contact well since their volume can be substantially reduced,
and the load is properly transferred with the stiffening of the elements under large volumetric
changes.



Figure 5. Comparison between cross-sections of the deformed cable from the simulation and a
real cable for two different axial positions along the cable.

2.5. Determination of effective coil properties
Using the deformed cable model, the effective properties of a Rutherford cable “coil material”
can be determined. In this case, the “coil material” is created by superimposing the unit cells
in an infinite space. For a coil with a large number of cables, this is expected to be a reasonable
approximation. In order to compute the effective properties, six different appropriate loading
conditions can be applied to determine the effective elasticity tensor. Writing the stress strain
linear elastic relation in engineering notation:
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(5)

it can be seen that if only one non-zero value of the strain components is chosen, then the
corresponding column of the elasticity matrix can be determined by computing the stress tensor
for that applied strain state. To extract the effective properties of the unit cell, six different
average strain states over the defined domain are imposed, and the corresponding average stress
states are calculated. For example, to compute the first column of the average elasticity matrix,
a value of 〈εx〉Ω is imposed with the other strain components set to zero and the average stress
〈σ〉Ω is computed. The operator 〈·〉Ω denotes the average over the domain Ω which corresponds
to the unit cell. For more details on the extraction of effective properties and the choice of
appropriate boundary conditions the interested reader is referred to the text by Zohdi and
Wriggers [11]. For the case of periodic cells, the periodic boundary conditions that are given in
equation 4 can be used. However, in this case, the boundary conditions are applied on all six
faces of the unit cell since the material is assumed to be infinite in all directions.



Figure 6. Cross-section of the unit cell used to determine the homogenized coil material. The
green color represents the insulation layer, the blue represents the interstitial epoxy, and the red
represents the strands.

As was the case with the cabling deformations, a regular hexahedral mesh is used with
elements that are unaligned with the material interface and therefore contain multiple materials.
For this model, over-integration is used in elements that contain multiple materials in order
better capture the geometry inside of the element (see Zohdi [11] for details). Figure 6 shows
an example of the cross-section of a unit cell which contains the deformed cable, the interstitial
binder, and the outer insulation layer. In order to construct this model with a regular mesh, an
intermediate mapping procedure is used to determine where the deformed cable material lies in
the new mesh.

For the example considered here, the interstitial material is assumed to be epoxy with a
Young’s modulus of 5 GPa and Poisson’s ratio of 0.3, the insulating layer is assumed to be an
S-glass/epoxy composite with a 45/45 orientation. For the insulation, the material properties
used are for a 60% volume fraction composite, which has a Young’s modulus of 14.9 GPa along
the direction of the cable axis and in the in-plane transverse direction, a Young’s modulus of 6.7
GPa in the direction transverse to the plane, and shear moduli of 14.6 GPa and 4.82 GPa in and
transverse to the plane respectively. Clearly, the accuracy of the individual material properties
will have a large impact on the calculated homogenized properties. For the epoxy and insulation
layers, reasonable values for the material properties are chosen; however, there is a fair amount
of uncertainty in these values.

For this example, the strand properties are varied, where the highest value chosen is
determined through a homogenization procedure of the macro-filament unit cell that is described
below. This homogenization procedure leads to transversely isotropic properties with an axial
Young’s modulus of approximately 126 GPa where the Young’s modulus of Nb3Sn is taken to be
135 GPa at room temperature and that of Cu and bronze is taken to be 120 GPa. Using these
individual properties, the homogenized properties turn out to be nearly isotropic; therefore, for
simplicity, isotropic properties are used in the homogenization of the coil material. The value
of the calculated Young’s modulus for the strand may be higher than the apparent modulus
for moderate strains due to the early onset of plasticity in the strands. For example, see [12]
and [13] for data on mechanical measurements of superconducting strands. Therefore, the
measured modulus in an experiment may be affected by lower apparent elasto-plastic modulus.
Also, the stress strain curve for coil stacks can show highly non-linear behavior. This makes
it difficult to obtain the elastic properties of the cable stack, although, as was shown in [14], a
more linear behavior can be obtained by “massaging” the cable stack to a high enough load.

The calculated values for the orthotropic effective properties of the coil material at room
temperature are shown in table 3 for three different values of the apparent Young’s modulus of



Table 3. Calculated properties for the coil material which includes the cable, the interstitial
epoxy, and the insulation layer. Results are presented for three different strand Young’s moduli
(Es) and two different insulation thicknesses. The subscripts for the Young’s moduli E, the
Poisson’s ratios ν, and the shear moduli µ correspond to the directions shown in figure 6, where
1 corresponds to the cable axis, 2 corresponds to the direction along the width of the cable, and
3 corresponds to the direction along the thickness of the cable.

100 µm insulation 60 µm insulation

Es (GPa) 90 110 126 90 110 126

E1 (GPa) 65.1 78.7 89.5 68.5 82.8 94.5
E2 (GPa) 41.0 45.8 49.3 45.7 51.7 56.1
E3 (GPa) 27.8 29.7 30.9 34.0 36.8 38.8
ν12 0.34 0.34 0.34 0.34 0.34 0.34
ν23 0.24 0.23 0.22 0.25 0.24 0.23
ν31 0.14 0.12 0.11 0.16 0.14 0.13
µ12 (GPa) 19.4 22.0 23.8 20.5 23.5 25.7
µ23 (GPa) 13.7 14.9 15.6 15.2 16.8 17.8
µ31 (GPa) 14.8 16.1 17.0 16.8 18.8 20.2

the strand (Es) and two different insulation thicknesses. The subscripts for the Young’s moduli
E, the Poisson’s ratios ν, and the shear moduli µ in table 3 correspond to the directions shown in
figure 6, where 1 corresponds to the cable axis, 2 corresponds to the direction along the width of
the cable, and 3 corresponds to the direction along the thickness of the cable. For the Poisson’s
ratios, νij are defined as the negative of the transverse strain in the j-direction over the strain
in the i-direction, when stress is applied only in the i-direction. The remaining Poisson’s ratios
can be found using the relation

νji = νij
Ej

Ei

. (6)

As can be seen from table 3 the Young’s modulus in the 3 direction is highly sensitive to the
thickness of the insulation layer. This also suggests that it is highly sensitive to the material
properties of the insulation layer. This is expected since the ratio of the amount of insulation
to cable is highest in this direction. The Young’s modulus in the 1 direction is seen to be more
sensitive to the properties of the strand material. The values for the Young’s modulus at room
temperature in the 3 direction seem to be in reasonable agreement with the experimental data
reported in [14], where values of 18 GPa and 39 GPa are given for monotonic loading and after
initial loading to 100 MPa respectively.

3. Unit cell model of RRP strand macro-filament

In order to obtain the homogeneous properties of the strands and to determine the local fields
from the larger scale homogenized strand/cable solution, a unit cell model of RRP macro-
filaments is developed. Figure 7 shows the unit cell used for this model which is a periodic
structure containing a total of two filaments and the interstitial matrix material. For this case,
only linear elastic properties are considered and the materials are assumed to be bronze, Cu, and
Nb3Sn. In order to obtain the effective properties of the superconducting region of the strand
(the region containing the subelements) the same homogenization technique that was described
in the previous section for the coil material is used. This leads to a value of 126 GPa for a



strand with 40% Nb3Sn, where the Young’s modulus of Nb3Sn is taken to be 135 GPa (see [1]
for various temperature dependent material properties), and the modulus of Cu and bronze is
120 GPa. In order to determine the localized behavior in the unit cell, an average strain over the
unit cell is applied through the boundary conditions, and the localized stress and strain fields
are solved.

Figure 7. Unit cell for RRP
strand macro-filaments. The red
area represents the Nb3Sn region,
while the blue represents Cu and
bronze regions.

4. Multi-scale coupling

In this work, a simplified framework is used where only the linear elastic case is considered
for the multi-scale coupling. Since the material behavior is linear, the material properties are
constants that are independent of the deformation. This leads to a trivial coupling procedure
where the strain state at a localized region in a larger-scale problem is simply transferred as
the average strain state over a unit cell at the smaller scale. This type of coupling is considered
reasonable if the gradient of the strain fields are fairly homogeneous over a large enough region.
This is expected to be the case in coupling the coil length scale to the cable length scale and also
in the coupling between the cable length scale and the strand/macro-filament length scale. For
the cable length scale, this is true since the strain is fairly homogeneous over the homogenized
strand cross-section due to the flattening of the cable and the interstitial epoxy which smooths
the strain fields. However, since the unit cell is in an undeformed configuration, this may lead to
errors in the localized stress and strain state. Nevertheless, it serves as an initial approximation
and may be useful for cases where the subelements are not highly deformed.

5. Conclusions

This work presents part of an overall goal, which is continuing to develop realistic three-
dimensional simulations to determine the strain state inside the superconducting filaments.
The development of the cabling simulation is an important step in obtaining realistic three-
dimensional models of the deformed strands; however, at this time the strands do not include
the subelements. Since the deformed three-dimensional subelement shapes are unknown at this
time, the macro-filament unit cell model includes undeformed sub-elements. Determining the
deformed shapes of the subelements in three-dimensional setting will be critical to obtaining the
real strain state in these filaments. In the work presented here, only elastic deformations are
included for the hierarchical component of the simulations. This is done as a first step since the
homogenized properties are independent of deformation; therefore, an iterative solution process
that can be expensive is not necessary. Furthermore, this iteration may need to be performed
at every integration point in the finite element model which can quickly become an intractable
problem. At LBNL, work is ongoing in developing simplified non-linear hierarchical models that



include the non-linear material effects, but at a lower computational expense. In summary, the
work presented here is an important step, mainly in the calculation of the three dimensional
deformation of the cables, in a larger framework to bridge the multiple scales while including
the relevant physical behaviors. The deformed cable geometry is critical in obtaining the initial
configuration for the hierarchical simulations of magnets that are fabricated with Rutherford
cables.

Acknowledgments

The authors would like to acknowledge Marco La China for obtaining a solution to the initial
cable geometry with the intersecting cylinder model. This work was supported by the Director,
Office of Science, High Energy Physics, U.S. Department of Energy, under contract No. (DE-
AC02-05CH11231).

References

[1] Mitchell N 2005 Cryogenics 45 501

[2] Mitchell N 2005 IEEE Trans. Appl. Supercond. 15 3572

[3] Ahoranta M, Lehtonen J, Tarhasaari T and Weiss K 2008 Supercond. Sci. Technol. 21

025005

[4] Boso D, Lefik M and Schrefler B 2005 Cryogenics 45 259

[5] Boso D, Lefik M and Schrefler B 2005 Cryogenics 45 589

[6] Farinon S, Boutboul T, Devred A, Leroy D and Oberli L 2007 IEEE Trans. Appl. Supercond.
17 1136

[7] Farinon S, Boutboul T, Devred A, Leroy D and Oberli L 2008 IEEE Trans. Appl. Supercond.
18 984

[8] Simo J 1988 Comput. Meths. Appl. Mech. Engrg. 68 1

[9] Gurtin M 2003 An Introduction to Continuum Mechanics (Mathematics in Science and
Engineering) (Elsevier Science (USA))

[10] Ogden R 1984 Non-Linear Elastic Deformations (Dover)

[11] Zohdi T and Wriggers P 2005 An Introduction to Computational Micromechanics (Springer-
Verlag)

[12] van den Eijnden N, Nijhuis A, Ilyin Y, Wessel W and ten Kate H 2005 Supercond. Sci.
Technol. 18 1523

[13] Nyilas A 2005 Supercond. Sci. Technol. 18 S409

[14] Chichili D, Arkan T, Ozelis J and Terechkine I 2000 IEEE Trans. Appl. Supercond. 10


